PGR21.com
이전 질문 게시판은 새 글 쓰기를 막았습니다. [질문 게시판]을 이용바랍니다.
Date 2007/09/27 15:18:33
Name Infinity
Subject 수학문제 하나 질문합니다. 정말 모르겠네요.
하... 풀다 풀다 이리 증명하기 어려운 문제는 오랜만이네요

이틀전 저녁부터 새벽까지 풀다가 증명했는데 증명중에 한부분이 걸려서 그것을 고쳐야되는데 도저히 모르겠습니다.

지식인들이 많은 PGR에 감히 질문합니다

4xyzw <= x^4 + y^4 + z^4 + w^4  -> 이걸 증명

(2tu <= t^2 + u^2) - 이미 증명된 이것을 활용해서 할것

쭉 가다가       (x^2 + y^2) (z^2 + w^2) => (2xy)(2zw) 에서

아무런 문제가 없는줄알았더니 만약 (예를 들자면) 5 > -10 ,  7 > - 12 이런식이라서 (2xy)랑 (2zw) 두개 곱하면 35 > 120 같이 false가

될수 있는 가능성은 어떻게 제거하나고 하네요, 머리속에서는 저기 세번째 식이 맞을수밖에 없고 밑에 가능성은 전혀없다고 하는데

무엇을 통해서 저것을 증명할수있는지 모르겠네요 그것만 뚫으면 완성인데 말이죠.

아니면 혹시 다른방식을 통해서 풀 수 있는지 질문합니다.

통합규정 1.3 이용안내 인용

"Pgr은 '명문화된 삭제규정'이 반드시 필요하지 않은 분을 환영합니다.
법 없이도 사는 사람, 남에게 상처를 주지 않으면서 같이 이야기 나눌 수 있는 분이면 좋겠습니다."
07/09/27 15:36
수정 아이콘
5>-10, 7>-12 같은 관계가 나올 '수'가 없습니다. x^2 + y^2 >= 2xy 에서 우항의 절대값이 무조건 작습니다. 5>-10 같은 건

설정이지 불가능한 수치입니다
07/09/27 15:37
수정 아이콘
물론 부등호가 있는 두식을 부호에관계 없이 막 곱하는건 잘못된 계산이지만 위의식에서는 그런 염려가 없어보이네요
Infinity
07/09/27 15:42
수정 아이콘
절대값이 무조건 작다는건 어떻게 알수있는거죠?
Infinity
07/09/27 15:42
수정 아이콘
저도 그게 작다는건 알겠는데 증명하려고하니 이유를 잘모르겠어요
ClassicMild
07/09/27 15:56
수정 아이콘
음.. 이런 건 어떨까요?
x^4 + y^4 >= 2x^2y^2 (산술-기하평균)
z^4 + w^4 >= 2z^2w^2 (산술-기하평균)
두 식을 더하면
x^4 + y^4 + z^4 + w^4 >= 2(x^2y^2 + z^2w^2)
여기서 x^2y^2 + z^2w^2 >= 2xyzw (산술-기하평균) 이므로 위에 식에 대입하면
x^4 + y^4 + z^4 + w^4 >= 4xyzw
가 나오는 것 같은데.. 혹시 틀렸나요? 수학이 오랜만이라ㅠ_ㅠ
꿀호떡a
07/09/27 16:03
수정 아이콘
|x^2 + y^2|과 |2xy| 에서, |x^2+y^2|-|2xy| = x^2+y^2±2xy = (x±y)^2 >=0 이죠. 즉 |x^2+y^2| - |2xy| >=0이므로, |x^2+y^2| >= |2xy| 인듯 합니다

2xy가 음수던 양수던, x^2+y^2에서 빼게 되면 완전제곱식 형태가 나오게 되니까 항상 0보다 큽니다
Infinity
07/09/27 16:04
수정 아이콘
와...ClassicMild님 정말감사합니다 ㅠㅠ 7시간쯤 한 고민이 눈녹듯....사라지는군요
Infinity
07/09/27 16:19
수정 아이콘
|x^2+y^2|-|2xy| = x^2+y^2±2xy 이부분이 약간 이해가안되네요 2xy의 절대값이면 무조건 양수가 나오기때문에 앞에 - 사인붙으면 어떤숫자가 나와도 음수가 되는거아닌가요?
sway with me
07/09/27 16:20
수정 아이콘
Infinity님// 2xy가 음수인 경우에는 l2xyl=-2xy, 2xy가 양수인 경우에는 l2xyl=+2xy가 되는 걸 저렇게 표시하신 겁니다.
Infinity
07/09/27 16:25
수정 아이콘
그러면 x^2-2xy+y^2=> 0 보다 큰게 증명이되는데 (x+y)^2 >= 0 는 어떻게 증명이 되는거죠?
Infinity
07/09/27 16:30
수정 아이콘
만약 제가 좀 무식한 소리하고있다면 이해해주세요 ㅠㅠ 지금 여긴 새벽세시반이거든요 swat with me님이 하신 부분은 잘 알겠는데 여전히 |x^2+y^2|-|2xy| = x^2+y^2±2xy 부분은 이해가 안갑니다, 왼쪽식의 절대값을 없애면 오른쪽처럼 두가지가 있지만 왼쪽식자체가 오른쪽식과 같은건 아니지않나요?
Infinity
07/09/27 16:31
수정 아이콘
아 방금위에 (x+y)^2>=0 부분 질문은 죄송합니다 ㅠㅠ 제곱은 무조건 0보다 크다는걸 잠시생각못했네요
sway with me
07/09/27 16:48
수정 아이콘
Infinity님// 음... 이해가 안 되신다면 그냥
2xy가 음수인 경우, 2xy가 양수인 경우로 나누어서 증명하시면 됩니다.

뭐, |x^2+y^2|-|2xy| = x^2+y^2±2xy 이걸
|x^2+y^2|-|2xy| = x^2+y^2+2xy(xy<0) or |x^2+y^2|-|2xy| = x^2+y^2-2xy(xy>0)
의 식으로 표시하면 결국 같은 말이 되지요.

정석에는 보통 그런 식으로 증명을 해놓았을 겁니다.

흐... 수학을 접해보는게 얼마만인지^^;;
꿀호떡a
07/09/27 17:13
수정 아이콘
의도는 sway with me님이 말씀하신 바로 그거였고요. 저걸 저렇게 써도 되는지는 잘 모르겠습니다만, 아마 되지 않을까요?
07/09/27 18:01
수정 아이콘
크아아악 --;
용호동갈매기
07/09/27 18:14
수정 아이콘
맙소사 -_-;;
신이 건들고 간
07/09/27 19:04
수정 아이콘
뭔말하는거임?
언뜻 유재석
07/09/27 19:20
수정 아이콘
지금 위엣분들 무슨 암호를 주고받고 계신건가요?
이젠안녕
07/09/27 20:16
수정 아이콘
제곱은 무조건 0이상이다. 이걸 깜박하신것같네요, 그것하나로도 sway with me님말씀처럼 증명유도..
목록 삭게로! 맨위로
번호 제목 이름 날짜 조회
30570 송진우 선수가 운영한다는 고깃집... [5] BluSkai2524 07/09/28 2524
30569 디지털 관련 질문입니다. 불대수관련;; [2] 지니-_-V1540 07/09/28 1540
30568 어제 소개팅한다고 덜덜 떨던 사람입니다..^^ [8] 소심똥꼬2187 07/09/28 2187
30567 동시대에 살았던 대조되는 성향의 리더는 누가 있을까요? [11] 루나문1845 07/09/27 1845
30566 프로토스] 전략적 플레이가 허무하게 막혔을때... [9] 낭만토스1726 07/09/27 1726
30565 시즈탱크모드로 드라군을 몇대 때려야 죽나요? [9] 신동v3406 07/09/27 3406
30564 노래 좀 찾아 주세요 [4] 이유있음1625 07/09/27 1625
30563 매틀랩질문있습니다~^^ [8] Lyn1664 07/09/27 1664
30561 속독에 관한 질문입니다^^ [3] ElaN1907 07/09/27 1907
30560 치즈러쉬 막는법을 알려주세요 [8] tongjolim3153 07/09/27 3153
30559 자전거 추천을 부탁드립니다~ [1] 청학동1571 07/09/27 1571
30558 여자친구에게 공익은 창피한 직업인가요??? [15] Ciara.5122 07/09/27 5122
30557 컴퓨터 이정도면 잘산건가요? [4] khw7111640 07/09/27 1640
30556 일본어 아시는 분들 잠깐만 도와주세요. ㅠ_ㅠ [4] 고등어3마리2177 07/09/27 2177
30555 군대에 관한 질문 여러가지... [6] Wow2244 07/09/27 2244
30553 남성전용 화장품은 어떤게 다른가요? [2] funnyday2111 07/09/27 2111
30552 수학문제 하나 질문합니다. 정말 모르겠네요. [19] Infinity2156 07/09/27 2156
30551 디어보이즈라는 만화에 대해서.. [5] 질럿을사랑한2152 07/09/27 2152
30550 키와 몸무게 관련해서... [11] 공익판정...2328 07/09/27 2328
30548 1박2일 바다여행 추천해주세요. [10] 잠잘까2732 07/09/27 2732
30547 일본여행에 대해서 질문입니다 [8] 촉호파이1750 07/09/27 1750
30546 대학 대기업취업률에서 대기업의 범위는 어떤 것인가요? [2] 첼로2196 07/09/27 2196
30545 2007 k-1 서울 대회 중계~~ [1] 뭉뭉이2258 07/09/27 2258
목록 이전 다음
댓글

+ : 최근 6시간내에 달린 댓글
+ : 최근 12시간내에 달린 댓글
맨 위로